Plan Nacional de Conservación del Toromiro

Sophora toromiro

TOROMIRO EN FLOR, DETALLE - EJEMPLAR DEL JARDÍN BOTÁNICO NACIONAL

Elaborado por:

Unidad Técnica - Oficina Provincial CONAF – Isla de Pascua
Mataveri Otai s/n, Hanga Roa, Isla de Pascua

noviembre 2011
Contenidos

1. Taxonomía ... 3
2. Morfología ... 3
3. Distribución Geográfica .. 7
4. Posición Ecológica y Fitogeográfica 8
5. Situación Actual de las Poblaciones 9
6. Estado de conservación ... 9
 6.1 Generalidades .. 9
 6.2 Primeras descripciones del toromiro 10
 6.3 Iniciativas de reintroducción y el papel del TMG 10
 6.4 Iniciativas en curso .. 12
 6.5 Trabajos actuales en el Vivero Mataveri Otai de CONAF 12
 6.6 Clasificación nacional actual 12
 6.7 Amenazas específicas .. 13
 6.8 Restricciones ... 14
 6.9 La conservación del toromiro y el PN Rapa Nui 15
7. Plan de Acción ... 18
 7.1 Contexto del Plan .. 18
 7.2 Metodología para la elaboración del plan 19
 7.3 Plan Nacional para la Conservación del Toromiro 20
 7.3.1 Objetivo general ... 20
 7.3.2 Objetivos específicos 20
 7.3.3 Líneas de acción y actividades por objetivo específico 21
 Objetivo 1: ... 21
 Objetivo 2: ... 22
 Objetivo 3: ... 22
 Objetivo 4: ... 23
 Objetivo 5: ... 24
 Objetivo 6: ... 25
 Objetivo 7: ... 26
 Objetivo 8: ... 29
Bibliografía ... 30
Lista de expertos .. 31
1. Taxonomía

<table>
<thead>
<tr>
<th>División:</th>
<th>Magnoliophyta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clase:</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Subclase:</td>
<td>Rosidae</td>
</tr>
<tr>
<td>Orden:</td>
<td>Fabales</td>
</tr>
<tr>
<td>Familia:</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Subfamilia:</td>
<td>Faboideae</td>
</tr>
<tr>
<td>Tribu:</td>
<td>Sophoreae</td>
</tr>
<tr>
<td>Género:</td>
<td>Sophora</td>
</tr>
<tr>
<td>Especie:</td>
<td>Sophora toromiro (Phil.) Skottsb.</td>
</tr>
<tr>
<td>Nombre vernacular:</td>
<td>toromiro</td>
</tr>
</tbody>
</table>

2. Morfología

El toromiro (*Sophora toromiro*) es un arbusto, que no suele sobrepasar los 2 a 3 m de altura (plantas de 30 a 55 años mantenidas en viveros han alcanzado hasta 2 m de altura).

El tronco principal puede alcanzar un grosor de unos 50 cm. Corteza de color café-rojizo con fisuras longitudinales.

Esta planta posee hojas compuestas imparipinadas de 4,5 a 10 cm de largo, dispuestas de forma alterna en las ramas. Cada hoja está formada por 9 a 13 pares de foliolos, ligeramente elípticos u ovalados, de 0,6 a 1,5 cm de largo y 0,7 cm de ancho cada uno. Estos foliolos son ligeramente peludos en el envés, al igual que el raquis (eje de la hoja) y en las ramillas más jóvenes el haz de la hoja (cara frontal de la hoja) es mucho menos peludo.

Posee una inflorescencia formada por racimos laxos compuestos por unas pocas flores, que poseen cinco pétalos amarillos de 2 cm de largo y una forma ligeramente tubular. Las flores poseen 10 estambres, de unos 2 cm de largo.

El fruto es una vaina (legumbre) alargada con una a seis semillas en su interior, que poseen forma ovalada, con 4 a 5 mm de diámetro. Semillas pequeñas ovoides a globosas, amarillas, difieren en la forma y tamaño de las semillas de otras especies del género presentes en Chile continental y en el archipiélago de Juan Fernández. El fruto mide hasta 8 cm de largo y 1 cm de ancho, apreciándose fuertemente adelgazado entre las semillas.
ejemplar adulto de toromiro, Jardín Botánico Nacional (fotografía: Oscar Fernández)

Ramilla con hojas (fotografía: Oscar Fernández) Fruto (fotografía: Oscar Fernández)
Toromiro en flor (fotografía: Oscar Fernández)

Flores (fotografía: Oscar Fernández)
semillas
Corteza
botones
frutos en formación

(fotografías: Óscar Fernández)
3. Distribución Geográfica

El toromiro solamente ha sido descrito para Isla de Pascua, territorio del cual es endémico. Hay especies parecidas que se hallan presentes en Nueva Zelanda (S. microphylla, S. tetraptera), en Polinesia francesa (S. mangarevaensis, S. raivavaeensis, S. rapaensis), en Hawai (S. chrysophylla), y también en las islas del Archipiélago Juan Fernández (S. fernandeziana, S. masafuerana) y en Chile continental, el pilo o pelú (Sophora cassiodes) y el mayo (Sophora macrocarpa).

El toromiro está declarado extinto en estado silvestre, y en la actualidad sólo unos pocos ejemplares crecen en sitios específicos y controlados de su hábitat original en Isla de Pascua, tanto del Vivero Mataveri Otai de CONAF como en ciertos puntos del Parque Nacional Rapa Nui. Sin embargo, estas plantas corresponden a individuos que forman parte de ensayos recientes y muy preliminares para la propagación de esta especie, que requieren nuevas acciones como las que se describen en este plan.

También existen ejemplares de toromiro en varios viveros y jardines botánicos de Chile y del exterior, para fines experimentales y demostrativos.

De acuerdo a relatos de los primeros occidentales que visitaron Isla de Pascua en los siglos XVIII y XIX, el toromiro crecía en ciertas áreas dispersas por la isla, preferentemente zonas bajas, en la costa norte, Hanga Roa y en Rano Kau; sin embargo su distribución antes de la colonización de la isla no ha sido determinada.

Clave para separar las especies de Sophora que se encuentran en Chile Rodríguez, R. & A. Marticorena. 2001)

1. Fruto nítidamente alado.......................... ...2
1'. Fruto no alado..3

2. Fruto con alas de margen irregular. Raquis de la hoja glabro....S. cassioides
2'. Fruto con alas de margen liso. Raquis de la hoja pubescente.. S. toromiro

3. Folíolos de 20 mm o más de largo..............................S.macaropacra
3'. Folíolos menores de 15 mm de largo...4

4. Folíolos glabros en la cara superior. Legumbre densamente pubescente....S. masafuerana
4'. Folíolos pubescentes en la cara superior. Legumbre ligeramente pubescente...S. fernandeziana
4. Posición Ecológica y Fitogeográfica

El género *Sophora* incluye aproximadamente 80 especies de árboles, arbustos y hierbas perennes de regiones tropicales y temperadas de ambos hemisferios. *Sophoreae*, la tribu a la que pertenece la *Sophora* es una de las menos especializadas de todas las tribus papilionoides que contienen un ensamblaje de géneros algo disímiles. Como tribu, su posición taxonómica al interior de la familia de las legumbres ha sido polémica. En general, las flores papilionoides tienen 10 estambres de los cuales al menos 9 (si no todos) están fusionados en cierto grado formando un tubo.

Sin embargo, en la *Sophoreae* esto no sucede. En efecto, los 10 estambres están completamente separados entre sí o, en poquísimas ocasiones, fusionados solo en la base.

A pesar de ser un género relativamente amplio y diverso, *Sophora* ha sido consideraba por mucho tiempo como divisible en secciones. Una de dichas secciones fue el objeto de un estudio realizado por Sousa & Rudd (1993) en donde los autores segregaron 4 especies de *Sophora*. Las especies segregadas fueron colocadas en el género *Styphnolobium*, que se distingue de *Sophora* porque tiene flores bracteadas, frutos indehiscentes y una mayor números de cromosomas (2n=28 en vez de 2n=18). Asimismo, *Styphnolobium* es estrictamente arborescente, mientras que *Sophora* incluye hierbas, arbustos y árboles perennes. *Styphnolobium japonicum* (ex *Sophora japonica*) es conocida más comúnmente como el árbol Acacia del Japón o Árbol de las Pagodas, y es muy valorada por sus flores cremosas que nacen a finales del verano y en otoño.

Varias de las especies cultivadas más comúnmente del género *Sophora*, incluida *S. toromiro*, forman parte de la sección *Edwardsia* del género *Sophora* (Peña et al, 1993). Los miembros de la Sección *Edwardsia* se distinguen por numerosas características. Los estambres y estigma provienen de la corola; las alas y pétalos quilla son similares en tamaño y forma; el pétalo estándar y apunta hacia delante (no es reflejo) y, muchas veces, el fruto tiene 4 alas. Este grupo incluye la *Sophora prostrata*, *S. microphylla*, *S. tetraperta*, *S. macrocarpa* y la propia *S. toromiro*. La *S. prostrata* es un arbusto pequeño, a veces postrado, con flores cafesosas-amarillas a naranjas. La popular *S. microphylla* de hoja perenne da flores amarillas brillantes que aparecen a fines de la primavera y muchas veces se le confunde con la *S. tetraperta*, cuyas flores amarillas brillantes de forma algo tubular aparecen a fines de la primavera. Es posible distinguir la *S. microphylla* de la *S. tetraperta* por sus más numerosos foliolos (20-40 comparados con 10-20 pares) y por la forma del foliólo, que es relativamente más ancho (obovado-oblongo a casi orbicular en la *S. microphylla*) comparado con la forma elíptica-oblonga de la *S. tetraperta*. Asimismo, la *S. macrocarpa* es similar en apariencia a la *S. tetraperta* y, algunas veces, se le confunde con ésta. Sin embargo, es posible distinguir la *S. macrocarpa* de la *S. tetraperta* por las vainas sin alas y menos foliolos (6-12 pares).

Los primeros visitantes europeos comentaron el hecho de que la isla no tuviera árboles; en 1722, Roggeveen señaló que la isla estaba "desprovista de árboles..."
grandes”; en 1770, González comentó "no es posible encontrar ni un solo árbol del que se pueda obtener una tabla de seis pulgadas de ancho"; la expedición de James Cook (1774) describió al S. toromiro por primera vez. El naturalista de dicha expedición, Forster, describió la primera vez que vio a este pequeño pero hermoso árbol: "Luego de descansar varias veces, logramos por fin llegar a la cumbre de la colina, desde donde veíamos el mar hacia el oeste y el barco anclado. La colina (Hanga Roa) estaba cubierta de matas de mimosa [S. toromiro], que aquí crecen hasta alcanzar una altura de ocho o nueve pies, y donde algunos de sus tallos casi tenían el ancho de un muslo de hombre".

En aquel entonces, S. toromiro formaba matorrales dispersos por la isla, pero su valiosa madera tenía varios usos y las arboledas naturales fueron disminuyendo a ritmo constante. Las causas de la completa pérdida de hábitat terrestres originales de la isla se remontan al cambio ecológico y social posterior a la colonización de los polinesios, alrededor del siglo X. Esta madera, dura, difícil de trabajar y de tono rojizo, era muy cotizada para el tallado de objetos ceremoniales y ornamentos personales y varias de las piezas obtenidas por los primeros navegantes y exploradores para diversos museos están hechas en toromiro. Durante la primera mitad del siglo XX, los tallados en madera de Rapa Nui fueron conocidos muchas veces como "tolomiros" (sic), en alusión al hecho de que algunos de ellos estaban esculpidos en madera de toromiro.

5. Situación Actual de las Poblaciones

Como ya se ha señalado, el toromiro está extinto en estado silvestre y no existen poblaciones en su hábitat original. Solo se pueden encontrar algunos ejemplares, provenientes de semillas, en jardines botánicos europeos y en Chile continental y algunos ejemplares reintroducidos en la isla en condiciones controladas en el Vivero Mataveri Otai de CONAF y en ciertos puntos del Parque Nacional Rapa Nui.

6. Estado de conservación

6.1 Generalidades

La larga historia de degradación de los diversos hábitat presentes en Rapa Nui se ha traducido en la pérdida de diversas especies de matorrales y bosques originales de la isla. El asentamiento polinesio inicial y el desarrollo moderno (es decir, desde principios del siglo XX) han provocado cambios ambientales profundos en la isla. Un ejemplo emblemático de estos drásticos cambios corresponde a una palma endémica, la Paschalococos disperta declarada extinta y el Sophora toromiro que sólo sobrevive en cultivo. Adicionalmente solo sobreviven 3 especies de Fanerógamas endémicas: Axonopus paschalis, Danthonia paschalis y Paspalum forsterianum. Además existen otras 25 especies
nativas, varias de las cuales sobreviven en poblaciones muy reducidas; tal es el caso de Triumfetta semitriloba y Caesalpinia major.

Las áreas de pradera se han expandido como resultado de la disminución de la cobertura arbórea, la explotación forestal, y el cultivo y la erosión del suelo asociada a ella. Durante el siglo XVII, la isla era un paisaje de terrenos agrícolas intervenidos por el hombre en donde sobrevivían solo algunos retazos pequeños de los matorrales originales. Este proceso de degradación se agudizó desde el año 1866 debido a la introducción de animales exóticos tales como conejos, ovejas, cerdos, caballos y vacunos.

6.2 Primeras descripciones del toromiro

La primera descripción científica y colecta del Sophora toromiro fue realizada en 1774 por los naturalistas de la expedición del navegante James Cook, J.R. y G. Forster. Este espécimen aún se conserva en el Herbario del Museo Británico de Historia Natural. Notas de aquel entonces sugieren que la especie sobrevivió en forma de matorrales dispersos, por ejemplo, Forster escribió que Hanga Roa "estaba cubierta de arbustos de Mimosa, (= Sophora toromiro) que crecían hasta una altura de 8 ó 9 pies."

A fines de 1886, el escritor William Thomson registró "pequeños macizos de Edwardsia (= Sophora toromiro), Broussonetia e Hibiscus, pero estaban todos muertos por haber sido desprovistos de sus cortezas por los rebaños de ovejas."

El botánico chileno Francisco Fuentes, al realizar su colecta en la isla de Pascua en 1911, señaló que la especie era muy escasa y sólo presente en el volcán Rano Kau.

A inicios del siglo XX este árbol crecía todavía en pendientes interiores del cráter del Rano Kau, protegido por las rocas de la depredación por parte del ganado introducido (ovejas, vacunos, caballares). Al visitar la isla en 1917 para escribir la historia natural de la isla, Karl Skottsberg sólo encontró un ejemplar. Este último espécimen fue fotografiado en 1934-35 por la Misión Francobelga. Y el mismo árbol al parecer sería el que observó Thor Heyerdahl en 1955/56, último en registrar su presencia, colectar sus semillas y señalar el deterioro en que se encontraba. Este ejemplar habría sido cortado algún tiempo después.

6.3 Iniciativas de reintroducción y el papel del TMG

Posteriormente, el toromiro se encontró en algunos jardines botánicos europeos. Las cepas europeas de toromiro actualmente en cultivo descenden de la colecta realizada por Heyerdahl en 1955/56. En 1959, 4 almácigos germinaron en el Jardín Botánico de Gotemburgo. Esta cepa inicial derivaba de un árbol y es probable que haya surgido como resultado de la autopolinización. Durante el
período de fines de los años 1970s, Gotemburgo distribuyó la cepa a numerosos jardines botánicos.

Este jardín botánico, sobre la base de los ejemplares adultos de toromiro que posee, ha realizado propagación por semillas y estacas además de micropropagación en colaboración con la Universidad de Agricultura Sueca. El material así propagado, además de haber sido repartido a varios jardines botánicos alrededor del mundo, fue también utilizado para realizar algunos ensayos de reintroducción de la especie en Rapa Nui en varias ocasiones, ya sea sobre la base de estacas (1981), semillas (1983), y dos plantas con aclimatación previa (1988).

En los años ’90, varios organismos nacionales y extranjeros crearon el llamado Grupo de Gestión del Toromiro (TMG), con diversas agencias colaboradoras comprometidas con la conservación del Sophora toromiro y con la recuperación de esta especie y de los hábitat isleños asociados a la ecología de la especie y la cultura de Isla de Pascua. Sin embargo, este trabajo también perdió continuidad.

En cuanto al Jardín Botánico de la Universidad de Bonn, a partir del descubrimiento de su ejemplar en 1988, lo han propagado por estacas y semillas. En 1995 a través de una gestión del Toromiro Management Group se trajo a la isla unas 180 plantas de Gothenburg y Bonn, que se entregaron a CONAF.

El Sophora toromiro también se cultiva en el Jardín Botánico Nacional de Viña del Mar, en Chile. Se cree que estos ejemplares provienen de las semillas recogidas por Efraín Volosky en Isla de Pascua. Efraín Volosky donó dicha semillas a Patricio Montaldo, quien fue Director del Jardín entre 1952 y 1959. Si bien no existe documentación sobre la recopilación, existe un espécimen de herbario de Sophora toromiro en el Herbario de Santiago (SGO) recogido por Volosky en 1953.

Además de las plantas que crecen en el Jardín Botánico Nacional de Viña del Mar, existen numerosos árboles que crecen en jardines y viveros privados. Ninguno de estos especímenes tiene algún origen documentado.

En 1994, se llevó una semilla de uno de los árboles de Santiago al Jardín Botánico de Missouri, en donde más tarde los almácigos se establecieron en el Arboretum y Jardín Botánico de Waimea en Hawai.

En 1996, se ubicó una nueva población cultivada en los Jardines Botánicos Reales de Melbourne, Australia. El origen de esta cepa es desconocido. Respecto al ejemplar del Jardín Botánico Nacional de Viña del Mar, éste ha servido para propagación por semilla y estacas, y actualmente se dispone de varios ejemplares. De este lugar se han enviado en diversas oportunidades semillas y plantas.

Sobre la base del mismo individuo se han realizado dos intentos de reintroducción, llevándose en la primera ocasión seis plántulas de un año en 1984, las que fueron mantenidas en el vivero del Parque Nacional Rapa Nui. Posteriormente, en 1988, se llevaron otras 6 plantas de semillas, esta vez de 4 años de edad, tres de las cuales fueron distribuidas en jardines en Hanga Roa, 2 se plantaron aledañas al vivero del parque, y una fue plantada en la ladera interior del volcán Rano Kau, constituyendo esta última el primer intento real de reintroducción in situ, ya que todos los demás estaban bajo condiciones de cultivo. Al igual que las iniciativas anteriores, esta tampoco tuvo éxito.
En Isla de Pascua, CONAF, en conjunto con el TMG o como parte de iniciativas propias, ha realizado diversos ensayos de reintroducción, desde los años ’80, sin éxito hasta la fecha, debido a diversos causas, entre los que los especialistas mencionan: falta de bacterias nitrificantes en el suelo local, aumento de pestes en la isla, debilidad de la descendencia de un último ejemplar que probablemente crecía en un sitio marginal de distribución de la especie, o una combinación de todas ellas.

Desde 1998, el toromiro está clasificado por la UICN como Extinct in the Wild (EW), señalando que “A few plants still exist in cultivation in botanic gardens but attempts at reintroduction of the species on Easter Island have failed”.

6.4 Iniciativas en curso

Más recientemente, un grupo de científicos del llamado Núcleo Milenio en Genómica Funcional de Plantas, dirigido por Patricio Arce (Universidad Católica de Chile), lleva a cabo un proyecto de conservación del toromiro, basado en ensayos de clonación in vitro a partir de ejemplares de pureza debidamente acreditada. Con este sistema se pretende contar con una gran cantidad de plantas que permitan ensayos masivos de propagación en la isla.

Los esfuerzos mencionados y varios otros más que se podrían nombrar son fundamentales, ya que todavía la conservación del toromiro depende del manejo de las plantas mantenidas ex situ.

Otra iniciativa, a cargo de Jaime Espejo y F.Rodríguez, ha estado enfocada en utilizar una técnica no tradicional pero eficaz a través de injertos, a partir de material de 3 viveros diferentes. Ya se han producido algunos cientos de plantas que podrían ser la base de nuevas actividades de propagación.

6.5 Trabajos actuales en el Vivero Mataveri Otai de CONAF

En un trabajo conjunto entre CONAF, el Jardín Botánico Nacional y la Fundación Mata Ki Te Rangi, se desarrolla en estos momentos un nuevo ensayo preliminar de propagación del toromiro, con fines principalmente demostrativos.

Este ensayo se está haciendo a partir de plantas adultas de hasta 8 años de edad aportadas por el Jardín Botánico Nacional, y son cuidadosamente mantenidas y revisadas periódicamente. El equipo de Mata Ki Te Rangi y personal de CONAF dedican una parte importante de su tiempo al registro y observación de los ejemplares, que crecen en el vivero y en un área reservada a un futuro jardín botánico de la isla, adyacente al vivero de CONAF. Paralelamente se han entregado varias de estas plantas a personas responsables de la comunidad local, así como también semillas.

Como parte de este ensayo, se plantaron además varios individuos en el interior del cráter del volcán Rano Kau, los cuales son monitoreados en forma regular. Todas estas actividades permitirán generar una referencia actualizada sobre los problemas diagnosticados en diferentes momentos a lo largo de los últimos 30 años de intentos de reintroducción, así como ayudar a detectar nuevos problemas.
6.6 Clasificación nacional actual

El toromiro fue clasificado de acuerdo al artículo 37 de la ley 19.300 y está declarado *extinto* en el Decreto 151 del 24 de marzo de 2007. Posteriormente fue reclasificado, durante el 7\º proceso de clasificación, de acuerdo a las modificaciones introducidas el artículo 37 precitado por la ley 20.417, donde se lo declara extinto en estado silvestre\(^2\). Los criterios considerados para esta ratificación fueron:

a) que su distribución natural se restringe a Isla de Pascua;
b) que han existido numerosas prospecciones exhaustivas; que no han logrado encontrar ningún individuo en estado silvestre;
c) que los esfuerzos realizados por reintroducirlo aún no lo han logrado; y
d) que sólo se conserva en algunos jardines botánicos y en casa de algunos particulares.

6.7 Amenazas específicas

Producto de cierta publicidad asociada al grado de amenaza que afecta al toromiro, se vislumbra, paradójicamente, tanto una potencialidad como una amenaza frente a los esfuerzos para conservarlo. Hay información de que en algunos jardines privados de Chile, y quizás también en Europa, es posible encontrar ejemplares de toromiro que, debidamente validados, podrían ser también incluidos en los trabajos de conservación.

La amenaza surge de la gran similitud entre el toromiro y el pelú (*Sophora cassioides*), lo que ha motivado a personas bien intencionadas a tratar de introducir "falsos toromiro" a la isla\(^3\). En viveros y jardines botánicos el toromiro podría ser fácilmente confundido con varias otras especies del género Sophora, especialmente con especies que poseen foliolos pequeños, como es el caso del pelú, una especie que vive en Chile continental entre Maule y Aysén. De hecho, a través de Internet hay particulares que compran y venden semillas de toromiro, en iniciativas si bien apasionadas, pero que carecen de mayor rigurosidad. Aun existen en la isla actualmente algunas plantas de dudosa procedencia, que deben ser monitoreadas y revisadas para determinar fehacientemente si se trata de *Sophora toromiro*.

Está documentado el caso de la donación de semillas realizadas al administrador del Parque Nacional Rapa Nui por un particular de Viña del Mar durante 1990, quien aseguraba poseer un ejemplar en su jardín privado de Reñaca. Las semillas fueron propagadas en el vivero de la isla, pero durante la primavera de 1991 el supuesto toromiro fue visitado por personal de CONAF, determinándose por sus frutos que se trataba de un pilo o pelú (*Sophora cassioides*), lo que llevó a la destrucción del material propagado en la isla con el objeto de evitar su posible hibridación con auténticos toromiro.

\(^2\) El decreto que avala este proceso está en trámite.

\(^3\) No obstante, de acuerdo a lo señalado en la clave el pilo o pelú *S. cassioides* difiere de *S. toromiro* porqué tiene frutos con alas de margen irregular y el raquis de la hoja es glabro, en tanto que el segundo tiene frutos con alas de margen liso y el raquis de la hoja es pubescente.
Dentro de las diferentes especies del género Sophora existe una alta probabilidad de hibridación, ya que son muy compatibles genéticamente, por lo tanto el manejo de las plantas debe ser muy riguroso al momento de la floración. Se debe establecer algunos sistemas de aislamiento de las flores para mantener la pureza del polen y los óvulos. Con este sistema se podrían realizar experiencias de polinización cruzada artificial, desarrollando de esta manera frutos y semillas provenientes de plantas puras, debidamente certificadas.

La presencia de patógenos ha sido uno de los mayores problemas en las iniciativas de reintroducción anteriores, y por ello debe ser monitoreada de manera constante a nivel de todos los tejidos de la planta con el fin de evitar la infestación y la infectación por estos patógenos. Dentro de los más comunes que se pueden identificar, se encuentra ácaros (arañita roja, arañita bimaculada), hongos (oídios), insectos (conchuelas foliares, larvas minadoras, desfoliadoras, taladradoras de la madera, larvas de lepidóptero), nemátodos que atacan a nivel de raíz. Con este monitoreo u observación se puede prevenir en forma oportuna el ataque.

Otro factor no menos importante que puede causar algún daño a las plantas corresponde a animales domésticos o al ganado mayor (vacunos, caballares). Estos agentes pueden ingresar a las áreas de introducción y propagación y causar enorme daño consumiendo las plantas o destruyéndolas. Para evitar este daño se deben instalar mallas de protección o cierres perimetrales que eviten el ingreso de los animales menores y mayores (malla Ursus fina). También es importante restringir el acceso a las personas que pudieran ingresar a los sectores de propagación, por lo cual es importante mantener debidamente señalizados los sectores de manejo.

6.8 Restricciones

El futuro del toromiro depende de la promoción y mantención de la colaboración entre los jardines botánicos que tienen cepas y las autoridades encargadas de la conservación tanto en Chile como en Isla de Pascua. La conservación de la especie sólo podrá tener éxito si está integrada en temas más amplios de planificación y restauración ecológica del hábitat de esta especie en el Parque Nacional Rapa Nui.

Esto, a su vez, debe aplicarse al contexto de las exigencias sociales y económicas que prevalecen en la isla. El toromiro no es solo una especie en peligro de extinción, es parte importante del patrimonio cultural de Rapa Nui.

De acuerdo al TMG, cualquier programa planificado de reintroducción y restauración del toromiro debe tener en cuenta las siguientes restricciones:

1. La ecología de Isla de Pascua ha sido alterada de manera radical y permanente debido a la ocupación humana, pasada y moderna. Esto queda de manifiesto a través de los cambios en el proceso del paisaje y en las asociaciones de las especies, al igual que por la extinción de especies de flora y fauna, tanto terrestre como marina.

2. Isla de Pascua tiene una población de unos 4.500 habitantes (estimada) y cualquier programa de reintroducción y restauración previsto debe tomar en cuenta los puntos de vista y las opiniones de la comunidad.
3. Actualmente, la isla cuenta con infraestructura, equipamiento y recursos humanos deficientes para la gestión de la conservación, es decir, se requieren mejoras importantes en la isla para la propagación de las plantas que están en peligro de extinción, tanto el toromiro, como otras especies.

4. La naturaleza de la degradación del hábitat ha sido tan profunda que su completa restauración en estricto sentido no se considera factible. En un principio, los esfuerzos se concentrarán en establecer bancos genéticos de los ejemplares cultivados del toromiro y en evaluar la capacidad de la isla de sustentar las poblaciones de toromiro reintroducidas. Los ensayos en sitios silvestres del Parque Nacional Rapa Nui deben hacerse bajo condiciones suficientemente controladas.

6.9 La conservación del toromiro y el PN Rapa Nui

Después de tantos años de intentos de propagar esta especie en Rapa Nui, es válido cuestionar si se justifica invertir recursos en nuevas iniciativas de este tipo, al menos en la isla.

Desde el punto de vista de CONAF y del Parque Nacional Rapa Nui, la conservación del toromiro es un objetivo permanente que se justifica en una serie de diversas consideraciones que incluso van más allá de lo estrictamente botánico:

a) Esta es la especie por antonomasia de la herencia natural de Rapa Nui; que evoca la dramática lección del paraíso isleño devastado por la acción humana y simboliza una época en que los árboles y su madera jugaron un papel fundamental en el desarrollo técnico, económico y cultural de la sociedad antigua.

b) El toromiro también encarna el enorme y urgente desafío de conservación de la flora endémica y nativa de Rapa Nui, y su conservación es un “paraguas” y un aliciente poderoso para los esfuerzos que se hagan con respecto tanto a otras especies como a sitios dentro del Parque Nacional Rapa Nui que pudieran ser restaurados en algún grado.

c) Y por supuesto, es el árbol endémico más simbólico de Isla de Pascua, y a pesar de las limitaciones conocidas, también es cierto que sigue siendo viable propagarlo en condiciones controladas y no se puede descartar que en el largo plazo pudiera llegar a propagarse en sitios restaurados del Parque Nacional Rapa Nui.
Área de ensayo de toromiro, interior del cráter del volcán Rano Kau - 2011

Plantación en área de ensayo Rano Kau

Plantación en área de ensayo Rano Kau
Área de ensayo en toromiro, en Mataveri Otai - 2011

Área de ensayo en toromiro, en Mataveri Otai - 2011
7. Plan de Acción

7.1 Contexto del Plan

Históricamente el ecosistema insular de Rapa Nui ha sido alterado de manera extensiva e intensiva, lo que ha conllevado una pérdida significativa de la vegetación original. La colonización polinésica y su posterior asentamiento provocó profundos cambios en el medio ambiente de la isla. Es así que la palma endémica *Paschalococos disperta* se extinguió y *Sophora toromiro* se encuentra sólo en cultivo. A ello se sumó que a partir de fines del siglo XIX la isla fue explotada indiscriminadamente como hacienda ganadera, durante varias décadas, entre otros impactos han sido los principales gestores de este deterioro.

Según la prospección realizada por un grupo de expertos franceses a fines del 2005, de un total de 68 especies consideradas como nativas, sólo subsisten 46 y de éstas el 50 por ciento se encuentra con problemas graves de subsistencia a corto plazo.

En este complejo escenario, la situación del *Sophora toromiro* es la más preocupante, debido a las siguientes causas, aparte de las restricciones ya mencionadas:

- *Su estado de conservación (extinto en estado silvestre).*
- *Existencia de pocos ejemplares, provenientes al parecer de una única planta, lo que redundaría en un estrecho perfil genético.*
- *Fracasos sistemáticos en la mayoría de los ensayos de reintroducción realizados a la fecha.*

A pesar de ello, *Sophora toromiro* es la especie más emblemática de la flora Rapanui, y por ende, a pesar de los enormes desafíos y limitaciones que existen para su reintroducción, se siguen haciendo esfuerzos con miras al restablecimiento de esta especie en la isla y el Parque Nacional, con las limitaciones inherentes que esto conlleva.

El presente Plan Nacional de Conservación del Toromiro *Sophora toromiro* es una iniciativa que se orienta principalmente a generar acciones concretas para mejorar su condición de riesgo, define por primera vez el contexto de trabajo y establece un programa general a fin de darle orden a las diferentes acciones para sentar las bases de un trabajo sistemático y a largo plazo. Este último aspecto ha sido una falencia recurrente en anteriores iniciativas y de allí la importancia de enfatizar la importancia de dar continuidad en el tiempo a las actividades que se realicen.

Este plan debe orientar los proyectos, programas y actividades de CONAF en torno a esta especie durante los próximos años, y generar las condiciones para evaluar de manera objetiva los resultados alcanzados, en función de los objetivos que aquí se establecen.
7.2 Metodología para la elaboración del plan

Por razones completamente prácticas, como el aislamiento de Isla de Pascua - donde se gestó este plan - las distancias y costos asociados a trasladarse desde y hacia ella, no fue posible replicar la metodología desarrollada en los procesos de elaboración de otros planes nacionales de conservación llevados a cabo por CONAF, los cuales incluyeron talleres participativos.

En consecuencia, se consideró la elaboración de un primer documento de trabajo, desarrollado por la Unidad Técnica de CONAF Isla de Pascua a partir de bibliografía básica sobre el toromiro, y a las experiencias anteriores de manejo de la especie. Se intentó en lo posible seguir el formato de otras iniciativas similares. Parte importante de la información técnica fue obtenida del sitio web del Toromiro Management Group.

Además, durante el proceso de elaboración del documento de trabajo, se organizó una misión con la Fundación Jardín Botánico Nacional (JBN), financiada por CONAF, por medio de la cual se contó con la presencia en la isla de don Oscar Fernández Campos, Jefe de Vivero y Colecciones Botánicas del JBN, y con amplia experiencia en manejo de toromiro.

Como parte de esta misión, se entregó a la Unidad Técnica de la Oficina Provincial de CONAF una valiosa documentación bibliográfica sobre el toromiro.

Por otra parte, se identificó y contactó a profesionales e instituciones, tanto del país como del exterior, que tuviesen un interés concreto en la conservación del toromiro, e idealmente experiencia en otras iniciativas de conservación. También se consultó a profesionales de otras áreas capaces de aportar en los aspectos de planificación. De esta forma, se constituyó un grupo de trabajo de nueve expertos, tanto nacionales como del extranjero.

El documento de trabajo original fue remitido por correo electrónico a los especialistas que concordaron en participar. Este documento fue conocido y revisado por ellos a fin de aportar observaciones y sugerencias para enriquecer las propuestas definidas en la versión final del plan. Esta etapa tuvo lugar durante el mes de octubre 2011, y la mayor parte de ellos los hizo llegar dentro del plazo considerado, también por correo electrónico.

Los variados aportes de los expertos tuvieron relación con los diversos antecedentes de este plan, pero se enfatizó especialmente la revisión y colaboración en los objetivos específicos, líneas de acción y actividades, que son el corazón del plan.

En este sentido, se tiene la confianza de que el plan de acción refleja la diversidad de opiniones y los aportes de los expertos, y por ende constituye una base sólida y consensuada, del camino a seguir para la conservación del toromiro.

4 Al final del documento se indica la lista de expertos.
7.3 Plan Nacional para la Conservación del Toromiro

El Plan Nacional de Conservación del Toromiro en Chile propone los siguientes objetivos, líneas de acción y actividades.

7.3.1 Objetivo general

1. Conservar el toromiro (Sophora toromiro) mediante el desarrollo de acciones de corto, mediano y largo plazo destinadas a la reintroducción de una población genéticamente y demográficamente viable de esta especie en Isla de Pascua, su hábitat natural.

7.3.2 Objetivos específicos

1. Recopilar información relativa a la especie, con énfasis en sus aspectos genéticos, de conservación y propagación.

2. Llevar a cabo una búsqueda mundial para localizar todos los ejemplares de toromiro disponible en cultivo, con su respectiva documentación histórica y genética, a fin de que puedan usarse para nuevas iniciativas de propagación.

3. Gestionar la creación de una red de trabajo del toromiro, con el fin de sistematizar y coordinar la investigación relativa a la especie, su reintroducción, conservación y otros aspectos ecológicos relacionados. Esta red debe incluir socios técnicos y científicos, nacionales y extranjeros, que permitan un trabajo a largo plazo.

4. Involucrar a la comunidad en el Plan Nacional de Conservación del Toromiro.

5. Tramitar a través de proyectos y/o programas presentados a fuentes de financiamiento los recursos para la ejecución de las actividades que conlleva el plan.

6. Planificar y ejecutar nuevos ensayos de germinación y reproducción vegetativa, de la especie, tanto in situ como ex situ.

7. Planificar, ejecutar y evaluar nuevos ensayos de reintroducción del toromiro en Isla de Pascua, tanto en ambientes controlados como en condiciones silvestres.

8. Transparentar y publicar ampliamente todos estos trabajos y resultados por medio de un sitio web que permita la retroalimentación constante del plan y mantenga la continuidad del mismo a través del tiempo.
7.3.3 Líneas de acción y actividades por objetivo específico

Objetivo 1:
Recolección de información relativa a la especie, con énfasis en sus aspectos genéticos, de conservación y propagación.

A lo largo de los últimos 25 años se ha ido generando mucha información sobre el toromiro, con diferentes propósitos y alcances, así como también de diverso valor. Es necesario recopilar la mayor cantidad posible de esta información para evitar repetir los mismos errores cometidos en acciones pasadas, y sacar conclusiones que ayuden a mejorar las nuevas iniciativas.

Línea de acción 1: Recopilar la información bibliográfica publicada tanto en Chile como en el extranjero, incluyendo artículos científicos y tesis de grado.

Actividad 1: elaborar un documento que sistematice la información disponible relativa a la especie, incluyendo antecedentes sobre su biología y hábitat, identificación de amenazas actuales y potenciales y una cartografía con la distribución actual e histórica.

Línea de Acción 2: Generar información confiable, validada y actualizada de los ejemplares de la especie existentes en diversas localidades del mundo al día de hoy.

Actividad 1: elaborar un catastro de los ejemplares de toromiro existentes en los diversos jardines botánicos de Chile y del extranjero, y en colecciones privadas y viveros.

Actividad 2: determinar mediante un cuestionario técnico aplicado en esos lugares una serie de aspectos básicos de información sobre las plantas identificadas, como por ejemplo: origen de las plantas, estado actual, tratamiento, bibliografía existente, programas realizados o en curso, interés en trabajar en la conservación de la especie, disponibilidad de plantas o semillas para propagación o germinación, entre otros.

Actividad 3: analizar la información recopilada y extraer conclusiones sobre posibles problemas y oportunidades específicos en el crecimiento, la germinación y el prendimiento de *Sophora toromiro* que se experimentan en los sitios identificados, con la intención de prevenir y corregir errores y fracasos en experimentos de germinación, crecimiento y prendimiento en Isla de Pascua. En particular interesa identificar con la mayor claridad posible las posibles causas que frustraron anteriores iniciativas de reintroducción.
Objetivo 2:
Llevar a cabo una búsqueda mundial para localizar todos los ejemplares de toromiro disponible en cultivo, con su respectiva documentación histórica y genética, a fin de que puedan usarse para nuevas iniciativas de propagación.

Desde la salida de semillas de toromiro hacia fuera de la isla, en diferentes momentos durante el siglo XX, se criaron plantas en diferentes lugares del mundo, que son la base de todos los ensayos realizados de propagación de la especie y en definitiva constituyen el material a partir del cual llevar a cabo las futuras acciones de reintroducción. Para garantizar la pureza genética de las plantas que se críen, y poder rastrear el origen del material que se utilice para futuros ensayos de germinación y propagación es necesario localizar los ejemplares que aun sobreviven. Además, es posible que se puedan lograr mejoras genéticas a partir de experiencias con diferentes ejemplares.

Línea de acción 1: elaborar un listado amplio de las instituciones públicas y privadas, tanto nacionales como extranjeras donde se encuentren ejemplares de toromiro5.

Actividad 1: investigar en la bibliografía existente los posibles ejemplares de toromiro existentes, llevando registro del lugar, responsable, origen, estado conocido y otros antecedentes relevantes.

Actividad 2: contactar las instituciones, tomando datos específicos de acuerdo a una ficha que se debe diseñar para tal efecto, y actualizando la información de acuerdo a los antecedentes entregados.

Actividad 3: acreditar la identidad taxonómica de todas las plantas localizadas.

Actividad 4: buscar en la isla, y eliminar los ejemplares de Sophora que no se acrediten como Sophora toromiro, a fin de evitar eventuales problemas de hibridación.

Objetivo 3:
Gestionar la creación de una red de trabajo del toromiro, con el fin de sistematizar y coordinar la investigación relativa a la especie, su reintroducción, conservación y otros aspectos ecológicos relacionados. Esta red debe incluir socios técnicos y científicos, nacionales y extranjeros, que permitan un trabajo a largo plazo.

La complejidad que conlleva la conservación del toromiro es alta, y necesariamente se requiere la contribución de diversas instituciones y expertos, tanto de la isla, como del continente y del extranjero. Sin embargo, es clave que la coordinación y el liderazgo de las actividades sea local, en Rapa Nui, a fin de generar capacidades y que además se garantice un trabajo de largo plazo.

Línea de acción 1: difusión de la iniciativa

Actividad 1: elaborar un catastro de posibles socios individuales o institucionales que puedan participar en la red.

5 Parte importante de este trabajo se encuentra realizado en publicaciones que es necesario revisar y actualizar.
Actividad 2: dar a conocer sistemáticamente este Plan de Nacional de Conservación a los socios potenciales identificados, e invitarlos a participar en la red.

Línea de acción 2: formalización de la red de trabajo

Actividad 1: elaborar y suscribir en convenio de colaboración u otra herramienta equivalente, para formalizar la participación en la red de trabajo.

Actividad 2: establecer un plan estratégico común de trabajo entre quienes estén interesados en participar en el presente plan, a fin de distribuir responsabilidades y acotar plazos y metas concretas.

Actividad 3: elaborar, ejecutar y evaluar un plan de trabajo anual.

Actividad 4: coordinar y evaluar el funcionamiento de la red (CONAF Isla de Pascua actuaría como Secretaría Técnica de la misma).

Actividad 5: involucrar a instituciones y empresas en las políticas de propagación y conservación de toromiro.

Actividad 6: mejorar las competencias locales a través de asociación con alguna universidad nacional o extranjera e instancias de capacitación, a fin de mantener el liderazgo del trabajo en la isla.

Objetivo 4: Involucrar a la comunidad en el Plan Nacional de Conservación del Toromiro.

Ninguna iniciativa de la envergadura que se propone en este plan tiene posibilidades de éxito sin el apoyo y participación activa de la comunidad Rapanui. El toromiro no es sólo una especie endémica de la isla, sino que además es una planta de especial significado en la historia, arte y cultura de este pueblo.

Línea de acción 1: socialización de este plan.

Actividad 1: validar ante los representantes de la comunidad el presente plan, recogiendo observaciones relevantes para su implementación.

Línea de acción 2: difusión.

Actividad 1: preparar material para actividades de educación ambiental y difusión para uso por parte del personal del vivero, Guardaparques y guías de turismo, incluyendo presentaciones Powerpoint, hojas informativas y otros.

Actividad 2: edición de una cartilla divulgativa sobre el toromiro y los esfuerzos de CONAF por reintroducirlo.

Actividad 3: incluir permanentemente el tema del toromiro en los esfuerzos de difusión y educación de CONAF Isla de Pascua, particularmente a través de la radio y la TV locales.

Línea de acción 3: educación e interpretación.
Actividad 1: considerar la construcción de un invernadero para disponer en él de plantas de toromiro además de ejemplares de otras especies propias de la isla, a fin de generar un contexto ambiental e histórico-cultural.

Actividad 2: considerar el cultivo de ejemplares de toromiro en contenedores o macetas, para controlar de mejor manera las condiciones de cultivo. Se contaría además con ejemplares en buen estado para estudios, observaciones y propagaciones.

Actividad 3: habilitación de un kiosko interpretativo sobre el toromiro en el vivero Mataveri Otai, asociado a una o más plantas de interés demostrativo.

Linea de acción 4: participación.

Actividad 1: Establecimiento de programa de plantación de toromiro en predios particulares (jardines, viveros, parcelas) de la comunidad, incluyendo la entrega de plantas debidamente certificadas.

Actividad 2: desarrollar actividades de capacitación dirigidas a la comunidad, a fin de formar personas competentes para mantener plantas de toromiro debidamente monitoreadas.

Actividad 3: elaborar y editar un manual de propagación y cuidados del toromiro, para uso por parte de particulares de la comunidad que participen en la conservación de la especie en sus predios. Especial énfasis se le debe dar a aspectos tales como monitoreo regular, protección de la pureza de la especie, control de plagas, cuidados culturales, riego, entre otros.

Objetivo 5: Tramitar a través de proyectos y/o programas presentados a fuentes de financiamiento los recursos para la ejecución de las actividades que conlleva el plan.

Llevar a cabo las actividades del plan nacional de conservación de esta especie involucra recursos económicos, los cuales deben ser buscados a través de los mecanismos oficiales existentes en nuestro país. Es fundamental transformar las propuestas de este plan en programas o proyectos específicos, que sean postulados a financiamiento idealmente de manera conjunta entre dos o más instituciones, siempre con liderazgo local.

Línea de acción 1: elaboración de propuestas, perfiles, programas y proyectos.

Actividad 1: analizar este mismo plan y el programa que elaboraría la red de trabajo del toromiro, a fin de extraer actividades que puedan transformarse en el núcleo de proyectos o programas acordes a las bases de las instituciones que sirven como fuentes de financiamiento (por ejemplo, Glosa Insular, FNDR, Reversión sectorial, Innova Corfo, FONDEF, FIA, FIC, entre otras).
Actividad 2: a partir del presente plan de acción generar un programa detallado, a fin de avanzar en forma paralela en diferentes ejes de trabajo. El programa debería definir acciones de corto, mediano y largo plazo, señalando además actividades, resultados esperados, responsables, plazos, recursos necesarios, entre otros aspectos.

Línea de acción 2: gestión de los programas o proyectos en las instituciones de financiamiento.

Actividad 1: conseguir los formatos de proyectos y elaborar los documentos respectivos, añadiendo los antecedentes y documentos requeridos, tanto técnicos como administrativos.

Actividad 2: presentar los proyectos o programas a las fuentes y diligenciar su pronta evaluación, corrigiendo los problemas que se identifiquen y propendiendo a la consecución de los financiamientos solicitados.

Objetivo 6:
Planificar y ejecutar nuevos ensayos de germinación y reproducción vegetativa de la especie, tanto in situ como ex situ.

La conservación de la especie sigue dependiendo de los ejemplares de toromiro que hay en jardines y viveros fuera del ambiente original del toromiro en Rapa Nui. Es fundamental asegurar la existencia de la especie en esos lugares, donde además debe producirse el material que se utilizará en la propagación de la especie en la isla.

Línea de acción 1: germinación y viverización en jardines botánicos y viveros particulares fuera de Isla de Pascua.

Actividad 1: generar y ejecutar un programa coordinado entre los diferentes jardines participantes para el desarrollo de los ensayos de germinación con una metodología comparable.

Actividad 2: desarrollar ensayos de polinización cruzada de plantas de diferentes orígenes (por ejemplo, Melbourne y Viña del Mar).

Actividad 3: evaluar y documentar los resultados y compartir la información.

Actividad 4: desarrollar ensayos de germinación en laboratorio y cultivo de tejido a partir de meristemas y trozos de la planta.

Actividad 5: crear un banco de semillas y plantas para sostener los ensayos de propagación en Isla de Pascua. Estos materiales deben ser de pureza certificada y libres de patógenos.

Línea de acción 2: germinación y viverización en Isla de Pascua

Actividad 1: generar y ejecutar un programa específico dentro del Vivero Mataveri Otai para el desarrollo de ensayos de germinación y viverización con una metodología apropiada, desarrollando y aplicando un protocolo de control y evaluación de estas actividades.
Actividad 2: dotar a CONAF Isla de Pascua de los equipos, instalaciones, insumos y personal necesarios para desarrollar ensayos de germinación.

Actividad 3: otorgar capacitación específica al personal involucrado en las actividades de germinación y viverización.

Actividad 4: elaborar y aplicar métodos estándares para las actividades de germinación y viverización, con protocolos bien establecidos.

Actividad 5: obtener semillas y crear un banco de semillas documentadas y certificadas para los ensayos en la isla. Se debe poner especial énfasis en una certificación totalmente confiable que garantice la pureza de los ejemplares a reproducir.

Actividad 6: definir desde el principio las técnicas más apropiadas de control de patógenos, en particular nematodos, insectos y ácaros, a fin de sentar las bases de un sistema eficiente de control de plagas para la especie.

Objetivo 7:
Planificar y ejecutar nuevos ensayos de reintroducción del toromiro en Isla de Pascua, tanto en ambientes controlados como en condiciones silvestres. Aunque las numerosas experiencias anteriores relativas a la reintroducción de la especie han resultado frustradas, hay buenas razones para pensar que un plan bien organizado que incluya acciones que permitan corregir los problemas pasados puede tener buenos resultados. Además, deberán realizarse mediciones y observaciones periódicas de tal manera de determinar el crecimiento y prospectar posibles daños o enfermedades de las plantas. Asimismo, deberán mantenerse los cortafuegos y eliminar las plantas invasoras que puedan dificultar el desarrollo de las plantas.

Línea de acción 1: Caracterizar edafoclimáticamente el hábitat de la especie.

- **Actividad 1:** Análisis de suelo (fertilidad, salinidad, físico, materia orgánica) y agua (calidad).
- **Actividad 2:** Determinaciones de temperaturas, humedad ambiental, radiación, precipitación.

Línea de acción 2: Analizar las simbiosis radiculares y las características de las especies simbiontes.

- **Actividad 1:** Caracterización de simbiontes (bacterias nitrificadoras, hongos u otros).

Línea de acción 3: Caracterización fisiológica del toromiro

- **Actividad 1:** Germinación
- **Actividad 2:** Crecimiento vegetativo y reproductivo.
- **Actividad 3:** Fenología.
Línea de acción 4: plantación en ambientes controlados: jardín botánico de Mataveri.

Actividad 1: Establecimiento de un huerto semillero clonal de toromiro para producción de semillas y posteriormente la viverización de plantas, asociado al Vivero Mataveri Otai.

Actividad 2: generar y ejecutar un programa específico para el desarrollo de los ensayos de plantación, con una metodología apropiada, debido control y posibilidades de evaluación. Se debe considerar el cambio de sustrato en la casilla de plantación (excavación) Se evaluará el tipo exacto de sustrato en el momento de las plantaciones, dependiendo de las condiciones y posibilidades.

Actividad 3: realizar ensayos con diversos sustratos.

Actividad 4: las plantas pueden provenir de ensayos de germinación u otro tipo de propagación tanto de la isla como fuera de ella, pero todas deben pasar por un proceso de protocolizado de plantación y seguimiento.

Actividad 5: selección y preparación de sitios específicos para plantación, pensando en aprovechar las posibilidades de contar con diversas condiciones controladas en el vivero Mataveri Otai y en el jardín botánico, procurando tener una buena diversidad de sitios. Lo mismo aplica a los predios particulares.

Actividad 6: Se debe establecer un sistema de producción de compost para las labores de plantación. Se aconseja utilizar materia vegetal susceptible de ser transformada en sustrato. Los sustratos a utilizar deben estar rigurosamente controlados fitosanitariamente.

Actividad 7: Se deben realizar ensayos de producción de humus de lombriz, producto que posee excelentes características para incrementar la cantidad de nutrientes en el suelo.

Actividad 8: capacitar a los funcionarios involucrados en las actividades de plantación y los cuidados que se debe otorgar a las plantas.

Actividad 9: elaborar y aplicar métodos estándares para las actividades de plantación, con protocolos bien establecidos.

Línea de acción 5: Preparación de espacios silvestres apropiados para los ensayos de propagación.

Actividad 1: selección de sitios específicos para plantación, teniendo en cuenta aspectos prácticos que favorezcan la ejecución de la actividad siguiente, basados en experiencias propias y en las recomendaciones de expertos.

Actividad 2: preparación de los sitios seleccionados. Aunque se trata de ambientes silvestres, los sitios escogidos deben quedar protegidos contra el ganado suelto (vacunos y caballares), la acción de los incendios forestales (todos premeditados) y otros factores que podrían perjudicar los ensayos de reintroducción. Debe haber una selección de ambientes variados, en conformidad con lo recomendado anteriormente por diversos expertos.
Actividad 3: planificar e iniciar ensayos de restauración de ciertas áreas seleccionadas del Parque Nacional Rapa Nui, potencialmente aptas para futuras plantaciones de toromiro. Se recomienda considerar varios sitios piloto de tamaño limitado representativos de diversos ambientes; entre ellos debería estar el cráter Rano Kau. Este trabajo debe ser asumido como parte del programa permanente del Parque Nacional Rapa Nui.

Línea de acción 6: plantación en ambientes silvestres en sitios seleccionados del Parque Nacional Rapa Nui.

Actividad 1: generar y ejecutar un programa específico para el desarrollo de los ensayos de plantación, con una metodología apropiada; y desarrollar un protocolo de control y evaluación

Actividad 2: las plantas pueden provenir de ensayos de germinación u otro tipo de propagación, en la isla o fuera de ella, pero todas deben pasar por un proceso estándar de viverización.

Actividad 3: capacitar a los funcionarios involucrados en las actividades de plantación y control. Se sugiere realizar actividades de capacitación de funcionarios del vivero Mataveri Otai, en dependencias del Jardín Botánico Nacional, debido a la extensa experiencia de esta institución en la propagación y conservación de la especie. Temas sugeridos: labores culturales, manipulación de herramientas y maquinarias, propagación, nociones de botánica, entre otros.

Actividad 4: elaborar y aplicar métodos estándares para las actividades de plantación, con protocolos bien establecidos.

Actividad 5: plantación, aplicando los protocolos correspondientes.

Línea de acción 7: Diseñar y aplicar un sistema de monitoreo y seguimiento, evaluando y documentando sistemáticamente estos ensayos.

Actividad 1: discutir y preparar un protocolo para el desarrollo de las actividades de monitoreo, tanto en ambientes controlados como silvestres. El monitoreo debe comenzar desde el momento de la propagación de las plantas, ya sea en vivero o en laboratorio.

Actividad 2: confeccionar fichas técnicas de los distintos ensayos de germinación y establecimientos de plantas de Sophora toromiro reproducidas en Rapa Nui.

Actividad 3: Establecer algún sistema de identificación claro y entendible para las plantas dispuestas en terreno.

Actividad 4: Registrar las distintas plantaciones a través de muestras de herbario y fotografías.

Actividad 5: evaluar los resultados, sacando conclusiones sobre los diferentes factores involucrados en los ensayos, a fin de mejorar las técnicas de propagación.

Actividad 6: aplicar las correcciones y mejoras que corresponda en nuevas plantaciones.

Actividad 7: dentro del sistema de monitoreo se debe otorgar especial énfasis a identificar y controlar los agentes patógenos que ataquen las
plantas de toromiro. Se debe tener un contacto permanente con el SAG para el envío y análisis de muestras de plagas o tejidos vegetales que presenten indicios de ataque de patógenos.

Actividad 8: realizar las mantenciones físicas de los sitios de ensayo. Mantener maquinarias y herramientas en excelente estado, en todo momento para lo cual se requiere definir o desarrollar manuales de procedimiento de utilización de estas.

Actividad 9: Realizar las correspondientes capacitaciones al personal a cargo de mantener las áreas o el estado de las plantas, principalmente en lo que se refiere a labores culturales (relativos al cultivo, llámese esta podas, riego, desinfecciones, etc.)

Objetivo 8:
Transparentar y publicar ampliamente los resultados de este plan especialmente por medio de un sitio web que permita la retroalimentación constante del plan y mantenga la continuidad del mismo a través del tiempo.
Toda la información que se recopile y que se genere en el tiempo a raíz de las diferentes acciones, debe ir siendo publicada rápidamente, y debe quedar accesible a toda persona interesada.

Línea de acción 1: edición de la información.

- **Actividad 1:** recopilación, revisión, y preparación para su publicación.

Línea de acción 2: publicación de la información.

- **Actividad 1:** creación de un sitio web de la red de trabajo.
- **Actividad 1:** subida al sitio web.
- **Actividad 2:** elaborar y distribuir informes anuales de avances resumiendo logros, problemas y nuevos desafíos.
- **Actividad 3:** digitalizar y subir a la red documentos antiguos relacionados con investigaciones y ensayos, para subirlos a Internet.
Bibliografía

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>INSTITUCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrés Meza</td>
<td>CONAF</td>
</tr>
<tr>
<td>Catherine Orliac</td>
<td>Directeur de Recherche au CNRS (Francia)</td>
</tr>
<tr>
<td>Ingrid Poblete</td>
<td>Depto. Agricultura del Desierto y Biotecnología, Universidad Arturo Prat</td>
</tr>
<tr>
<td>Iván Benoit Contesse</td>
<td>CONAF</td>
</tr>
<tr>
<td>Jaime Espejo</td>
<td>Ingeniero Forestal</td>
</tr>
<tr>
<td>Marcia Ricci Chamorro</td>
<td>CONAF</td>
</tr>
<tr>
<td>Miguel Díaz Gacitúa</td>
<td>CONAF</td>
</tr>
<tr>
<td>Óscar Fernández</td>
<td>Jefe de Vivero y Colecciones Botánicas, Fundación Jardín Botánico Nacional</td>
</tr>
<tr>
<td>Wolfram Lobin</td>
<td>Botanic Gardens University of Bonn (Alemania)</td>
</tr>
</tbody>
</table>

Edición:
Enrique Tucki Montero
Unidad Técnica
Oficina Provincial CONAF Isla de Pascua